If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-14x-71=0
a = 5; b = -14; c = -71;
Δ = b2-4ac
Δ = -142-4·5·(-71)
Δ = 1616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1616}=\sqrt{16*101}=\sqrt{16}*\sqrt{101}=4\sqrt{101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4\sqrt{101}}{2*5}=\frac{14-4\sqrt{101}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4\sqrt{101}}{2*5}=\frac{14+4\sqrt{101}}{10} $
| 2+7=d | | x+1/3+4x+5/4=2 | | 6t+4t=10 | | 5y-12y=63 | | 14v-10v=12 | | 16-3h=10 | | −7c−(8c−9)=6c+1-2c | | 16−3h=10 | | r+18/8=4 | | 88=8(n+5) | | 0.08x=20 | | 5+4b=49 | | 5=r+27/7 | | 18x2-6x=0 | | -8-5(4x+5)=-7x+4-8x | | q/8+30=36 | | c-27/5=8 | | 180-16t^2=84 | | p/2+14=18 | | 3^(2u+1)+2^(2u+1)-5∙6^u=0 | | 91=7(h+9) | | 6/9x-1/3=3 | | 8(f+8)=72 | | 2g=3/4 | | 13=5+2p | | 9=t+35/6 | | -6(b-93)=-6 | | 4x-3=124 | | t/10-2=1 | | 2⋅x^2+1=8 | | 2⋅x2+1=8 | | X=x+80 |